Reconstruction of theWest Stowell 20-07-2003 formation |
|||||

1. |
Draw a circle. Draw and extend the horizontal and vertical centerlines. | ||||

2. |
Construct the inscribed 13-sided regular polygon of circle 1, pointing up. (Note, that this polygon can not be constructed by using ruler-and-compass construction methods. The co-ordinates of its angular points must be calculated). | ||||

3. |
Construct a 13-pointed star, by connecting all angular points of polygon 2, five apart. (Note, that 13 and 5 both are Fibonacci-numbers, as is their difference: 8. For more on Fibonacci-numbers and the Golden Section, see R. Knott's personal pages). | ||||

4. |
Construct the inscribed circle of polygon 2. | ||||

5. |
Construct the inscribed 13-sided regular polygon of circle 4, pointing down. | ||||

6. |
Connect all angular points of polygon 5, two apart. Extend all these connection-lines, until they meet every third extended connection-line. A 13-pointed star is formed, as shown. | ||||

7. |
Construct a circle concentric to circle 1, passing through the angular points of star 6. | ||||

8. |
Draw all the rays from the center of circle 1 to the angular points of star 6. | ||||

9. |
Construct the inscribed circle of one of the kite-shaped parts of star 3, as shown (tangent to the diagonals of two adjacent angular points and tangent to the diagonals of the next two angular points, three apart). | ||||

10. |
Copy circle 9 13 times, to the intersections of rays 8 and circle 1. | ||||

11. |
Construct a small circle centered at the upper intersection of circle 4 and the vertical centerline, tangent to circle 1 at the near side. | ||||

12. |
Draw the connecting line between the left intersection of the lowest circle 10 with circle 1 and the center of circle 1. Extend this line up to circle 7, see figure. | ||||

13. |
Copy circle 11 to the (upper) intersection of line 12 and circle 7. | ||||

14. |
Construct a circle concentric to circle 1, passing through the third set of intersections of diagonals forming star 3, counted inwards from circle 1 inclusive. | ||||

15. |
Construct a small circle the centerline of which connects the lower intersections of circles 1 and 4 with the vertical centerline. | ||||

16. |
Copy circle 15 13 times, to the intersections of rays 8 and circle 14. | ||||

17. |
Construct the inscribed circle of the 13-sided regular polygon enclosed by star 3. | ||||

18. |
Taking as its center the upper intersection of the set of intersections of the diagonals forming star 3 closest to the center of circle 1, construct a small circle, tangent to circle 17 at the near side. See figure. | ||||

19. |
Copy circle 18 13 times, to the centers of circles 16. | ||||

20. |
Copy circle 18 another time, to the center of circle 13. | ||||

21. |
Construct a circle concentric to circle 1, tangent to circle 20 at the upper side. | ||||

22. |
Circles 1, 7, 10, 13, 16, 19 and 21, and star 3 form the ingredients for the reconstruction. | ||||

23. |
Remove from circles 7, 13 and 21 the parts not visible in the formation. High resolution dwf-file | ||||

24. |
Colouring green the areas corresponding to standing... High resolution dwf-file | ||||

25. |
...or to flattened crop, finishes the reconstruction of the West Stowell formation of 20-07-2003. High resolution dwf-file | ||||

26. |
courtesy the Crop Circle Connector photo by: Nick Nicholson | The final result matches perfectly with the aerial image. | |||

| |||||

Copyright © 2003, Zef Damen, The Netherlands Personal use only, commercial use prohibited. | |||||

Since 1-Februari-2005 |